Ensemble Methods for Structured Prediction
نویسندگان
چکیده
We present a series of learning algorithms and theoretical guarantees for designing accurate ensembles of structured prediction tasks. This includes several randomized and deterministic algorithms devised by converting on-line learning algorithms to batch ones, and a boosting-style algorithm applicable in the context of structured prediction with a large number of labels. We give a detailed study of all these algorithms, including the description of new on-line-to-batch conversions and learning guarantees. We also report the results of extensive experiments with these algorithms in several structured prediction tasks.
منابع مشابه
Tree ensembles for predicting structured outputs
In this paper, we address the task of learning models for predicting structured outputs. We consider both global and local predictions of structured outputs, the former based on a single model that predicts the entire output structure and the latter based on a collection of models, each predicting a component of the output structure. We use ensemble methods and apply them in the context of pred...
متن کاملOn-line Learning Approach to Ensemble Methods for Structured Prediction
We present a series of algorithms with theoretical guarantees for learning accurate ensembles of several structured prediction rules for which no prior knowledge is assumed. This includes a number of randomized and deterministic algorithms devised by converting on-line learning algorithms to batch ones. We also report the results of experiments with these algorithms on various structured predic...
متن کاملA Hierarchical Ensemble Method for DAG-Structured Taxonomies
Structured taxonomies characterize several real world problems, ranging from text categorization, to video annotation and protein function prediction. In this context “flat” learning methods may introduce inconsistent predictions, while structured output-aware learning methods can improve the accuracy of the predictions by exploiting the hierarchical relationships between classes. We propose a ...
متن کاملSidestepping Intractable Inference with Structured Ensemble Cascades
For many structured prediction problems, complex models often require adopting approximate inference techniques such as variational methods or sampling, which generally provide no satisfactory accuracy guarantees. In this work, we propose sidestepping intractable inference altogether by learning ensembles of tractable sub-models as part of a structured prediction cascade. We focus in particular...
متن کاملDevelopment of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability
Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set. Therefore, developing a machine for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014